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We assessed the effects of subtype-selective ER agonists on monoamine levels in discrete regions of
the female rat brain. Ovariectomized (ovx) rats were treated for 4 days with vehicle, 17�-estradiol (E;
0.05 mg/kg), an ER� agonist (C19; 3 mg/kg) or an ER� agonist (PPT; 3 mg/kg) and samples from brain
regions were assessed for monoamines and metabolites. We also assessed effects of ER� modulation on
baseline and fenfluramine-induced release of monoamines in hippocampus using microdialysis. In the
first study, E and the ER� agonist increased norepinephrine in cortex and all three ER ligands increased it in
strogen receptors
at
rain
onoamines

the ventral hippocampus. Changes in levels of the noradrenergic metabolite, MHPG and the dopaminergic
metabolite, DOPAC were noted in brain areas of ER ligand-treated animals. E also increased levels of 5HIAA
in three brain areas. In the microdialysis study, there were no differences among groups in baseline levels
of monoamines. However, E and the ER� agonist increased levels of the dopaminergic metabolite, HVA
following fenfluramine. In summary, activation of the two nuclear ERs with selective agonists affects
monoamine and metabolite levels in discrete brain areas, a number of which are known to play key roles

func
in cognitive and affective

. Introduction
A large body of evidence shows that the gonadal steroid 17�-
stradiol (E) modulates activity of numerous neurotransmitter
ystems in the mammalian brain, including monoaminergic sys-
ems [1]. Administration of E alters levels of norepinephrine (NE),

Abbreviations: ovx, ovariectomized; ER, estrogen receptor; E, 17�-estradiol;
19, 4-bromo-9a-butyl-7-hydroxy-1,2,9,9a-tetrahydro-3H-fluoren-3-one; PPT,
,4′ ,4′′-(4-propyl-{1H}-pyrazole-1,3,5-triyl)trisphenol; DPN, diarylpropioni-
rile; HPLC, high performance liquid chromatography; NE, norepinephrine;
A, dopamine; 5HT, serotonin; DOPAC, 3,4-dihydroxyphenylacetic acid; HVA,
omovanillic acid; MHPG, 3-methoxy-4-hydroxyphenylglycol; 5HIAA, 5-
ydroxyindole acetic acid; FC, frontal cortex; ACB, nucleus accumbens; ST,
triatum; AMYG, amygdala; VHIPP, ventral hippocampus; SN, substantia nigra;
TA, ventral tegmental area; DR, dorsal raphe nucleus; LC, locus coeruleus; TPH2,

ryptophan hydroxylase 2; SERT, serotonin reuptake transporter.
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ucia.Correa@amirapharma.com (L. Correa), Dan.Lorrain@amirapharm.com
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V. Luine).
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dopamine (DA), and serotonin (5HT) and their metabolites in dis-
crete regions of the rat brain (for examples see [2–5]). Modulation
of monoamines by E affects many aspects of mammalian physiol-
ogy including reproductive and non-reproductive process such as
learning, memory and affective behaviors [6–8]. Indeed, E has been
shown to improve performance in learning and memory tasks in
ovariectomized rats and these changes are correlated with changes
in monoamines in some brain areas [5].

Estradiol exerts its effects on monoaminergic systems via multi-
ple regulatory mechanisms. For example, E alters levels of enzymes
that synthesize DA, NE and 5HT, as well as those that degrade
these neurotransmitters [9–13]. Estradiol also regulates levels of
monoamine reuptake transporters and receptors (for examples see
[14–18]), and coupling of receptors to intracellular second messen-
ger systems [19,20]. Collectively, these findings support the tenet
that E acts via multiple mechanisms to alter monoamine levels
within the brain.

Two nuclear forms of the ER, termed ER� and ER�, have been

identified. The two receptors share a high degree of homology in
the DNA binding domain. Despite significant differences in the lig-
and binding domains of the receptors, they have similar affinity
for E [21,22]. In addition to containing the ligand binding pocket,
the ligand binding domains of the receptors also harbor regions
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mportant for receptor dimerization. Furthermore, the two ERs can
orm homo- and hetero-dimer complexes that may act via differ-
nt intracellular mechanisms to alter gene transcription [23,24].
he ligand binding domains also contain sequence motifs impor-
ant for interaction with proteins that comprise the transcriptional

achinery needed to drive changes in expression of ER-responsive
enes. These inherent differences in the ligand binding domains,
oupled with differences in the transactivation domains of the two
eceptors, may allow the ERs to act in different ways to transduce
he effects of E.

Both ER� and ER� are expressed throughout the rat brain in dis-
inct neuronal populations and they can also be co-expressed by
eurons [25–28]. Importantly, both ER subtypes are neuroanatom-

cally positioned to regulate the monoaminergic systems. Both ERs
re expressed within brainstem NE cell groups [25,26,29,30] and
A cell groups in the hypothalamus [28,31]. The ER� appears to
redominate in DA neurons of the midbrain [32,33]. Serotonergic
eurons of the dorsal raphe nucleus of mice and primates [34,35]
xpress ER� however, the ER complement of serotonergic neurons
ay differ with species [36,37].
While it is clear that E significantly influences monoaminergic

ctivity in the rat brain, the ER(s) responsible for transducing these
ffects remains unclear. Imwalle et al. [38] reported that 5HT and
A levels were altered in a number of brain regions of ER� knock-
ut mice suggesting that ER� plays a role in modulating some of
he effects of E on monoamine levels. Our goal was to determine
he effect of ER subtype-selective activation on monoamine and

etabolite levels in the female rat brain. We assessed monoamines
n discrete regions of the rat brain focussing on areas containing

onoaminergic cell bodies and terminal fields associated with cog-
itive function and affect. Furthermore, we used microdialysis to
ssess the effects of an ER� selective modulator on monoamine and
etabolite levels the ventral hippocampus of conscious female rats.
e identified neurotransmitter- and region-selective effects of ER

igands on monoamines and their metabolites.

. Materials and methods

.1. Animal handling and tissue collection

Adult, female Sprague–Dawley rats (∼200 g) were purchased
Taconic Farms, Germantown NY or Charles Rivers, North Franklin,
T) ovariectomized (ovx) and shipped 1 week following surgery.
fter arrival, animals were allowed to acclimate for 1 week prior to

he start of the study. They were housed under a 12L:12D light cycle
nd fed a phytoestrogen-reduced diet (TD96155, Harlan Teklad,
adison, WI). All animal handling procedures were approved by

he Institutional Animal Care and Use Committee at Merck & Co.,
nc.

.2. Tissue monoamines

Animals were weighed, assigned to treatment groups
n = 8/group) and dosed s.c. once daily for 4 days with vehi-
le (100 �l; sesame oil, Sigma, St. Louis, MO), 17�-estradiol
E, 0.05 mg/kg, Sigma), an ER� subtype-selective agonist
4-bromo-9a-butyl-7-hydroxy-1,2,9,9a-tetrahydro-3H-fluoren-3-
ne referred to as C19; 3 mg/kg; [39]) or an ER� subtype-selective
gonist (4,4′,4′′-(4-propyl-{1H}-pyrazole-1,3,5-triyl)trisphenol
PPT); 3 mg/kg; Tocris Cookson, Inc., St. Louis, MO, Catalog #1426).

he ER� agonist C19 has a potency of 1.8 nM on human ER� which
s similar to that of E, but C19 is >70-fold selective for the ER�
ompared to ER� [39]. The dose of the ER� agonist was based
n unpublished data (Merck Research Labs) on the effect of this
ompound on immature rat uterine weight. The ER� agonist has
& Molecular Biology 122 (2010) 310–317 311

>400-fold selectivity for ER� compared to ER� and no activity on
the ER� in transactivation assays [40]. The doses and duration of E
and PPT were based on previously published [41] and unpublished
(Lubbers) information on the effects of these ligands on uterine
weight and CNS indices.

On Day 4, 4 h after the last dose, body weight was measured
and the animals were then euthanized with CO2. Uteri were col-
lected and weighed. Brain tissue was removed, immediately frozen
in dry ice and stored at −80 ◦C until sectioned serially at 300 �m
thickness using a cryostat. Sections were freeze-mounted on micro-
scope slides using a drop of ddH2O and were stored at −80 ◦C until
samples from discrete regions of interest were collected.

Discrete regions of brain were collected by placing microscope
slides with affixed tissue sections on a freezing stage maintained at
−12 ◦C and samples from nine brain regions were obtained using a
500 �m diameter punch. The rat brain atlas of Paxinos and Watson
[42] served as a reference. A set number of tissue punches per brain
area, indicated by the number in parenthesis, were obtained for
each animal: frontal cortex (10), nucleus accumbens (6), striatum
(8), amygdala (6) ventral hippocampus (12), substantia nigra (6),
ventral tegmental area (6), dorsal raphe (6) and locus coeruleus
(4). Samples were placed into 1.4 ml Eppendorf tubes and stored at
−80 ◦C.

2.3. Microdialysis

We examined the effects of E and the ER� agonist C19 on
monoaminergic activity in the ventral hippocampus because of
the established role of this area in cognitive and affective function
(reviewed in [7,43]). Neurons in the ventral hippocampus express
both ERs and this area also receives projections from monoamin-
ergic cell groups known to express the receptors [25,44].

Animals were assigned to treatment groups (n = 5–6/group) and
dosed s.c. once daily for 4 days with vehicle (100 �l; sesame oil),
E (0.05 mg/kg) or C19 (3 mg/kg) as previously described. Micro-
dialysis probes were inserted on Day 3 of dosing. Briefly, rats
were anesthetized with 3% isoflurane (in 1% O2) and implanted
with a unilateral microdialysis probe CMA/11 (CMA/Microdialysis,
Acton, MA) with a 3 mm dialysis tip in the ventral hippocampus
(anteroposterior, −5.3 mm; mediolateral, −4.6 mm; and dorsoven-
tral, −7.5 mm) [42]. The microdialysis probe was slowly lowered
into position and was then fixed to the skull by means of three
anchoring screws and application of dental acrylic. Immediately
following surgery, rats were placed in their testing arena and
allowed to recover for a minimum of 14 h.

In vivo microdialysis was performed as previously described
[45]. On Day 4 of treatment, rats were tethered to a CMA awake ani-
mal system by means of a plastic collar. Following the post-surgery
recovery period, perfusion through the dialysis probe with artificial
cerebrospinal fluid (aCSF; 145 mM NaCl; 2.7 mM KCl; 1.0 mM MgCl2
and 1.2 mM CaCl2; pH 7.4) was set at 2.0 �l/min. A 2-h stabiliza-
tion period was then allowed prior to sample collection. Fractions
(60 �l) were collected into 250 �l glass vials via a BAS honey-
comb fraction collector maintained at 4 ◦C (BAS HoneyComb; BAS,
West Lafayette, IA). Dialysates were collected at 30 min intervals
for 3 h to assess baseline levels of neurotransmitters and metabo-
lites. All animals then received fenfluramine (10 mg/kg in saline,
i.p., Sigma–Aldrich, St. Louis, MO) which is known to stimulate
release of monoamines [46,47] and dialysates were collected for
an additional 3 h.

At the completion of sample collection, rats were euthanized by

CO2 inhalation and the microdialysate probes were perfused with
approximately 200 �l of cresyl-violet dye. Brains were removed
and a coronal cut was made at the level where the probe penetrated
the cortex. The resulting coronal surface was imaged using an HP
ScanJet 7400L scanner attached to a Compaq IBM PC. Only those
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Fig. 1. Effect of ER ligands on body weight over time. Animals (n = 8/group) were
dosed s.c. for 4 days with vehicle, E (0.05 mg/kg), the ER� subtype-selective ago-
nist, C19 (3 mg/kg) or the ER� subtype-selective agonist, PPT (3 mg/kg). Mean ± SEM
body weight increased over time, except in the group treated with PPT. On Day 4,
body weight was greater in animals treated with vehicle or C19 compared to the

35%). The ER� agonist also increased levels of MHPG in this region
(p < 0.01; 119%). The ER� agonist, C19 decreased levels of MHPG in
the locus coeruleus (p < 0.05; 34%).
12 L.S. Lubbers et al. / Journal of Steroid Bioche

nimals demonstrating dye within the ventral hippocampus were
ncluded in the analysis.

.4. Monoamine analysis

.4.1. Tissue punches
Samples were assessed for monoamine and metabolite lev-

ls using high performance liquid chromatography (HPLC) with
lectrochemical detection and protein levels were determined
s previously described [48]. The following neurochemicals were
ssessed: DA and its metabolites 3,4-dihydroxyphenylacetic acid
DOPAC) and homovanillic acid (HVA), NE and its metabo-
ite 3-methoxy-4-hydroxyphenylglycol (MHPG), and 5HT and its

etabolite 5-hydroxyindole acetic acid (5HIAA). All samples from
discrete brain area were analyzed within the same HPLC run. Lev-
ls of transmitters and metabolites were calculated by reference to
tandards and an internal standard using peak integration. Values
ere standardized based on protein levels and expressed as pg/�g
rotein. In some cases, the majority of neurochemical values (pg/�g
rotein) within a brain region from a given animal were found to
e two or more times the mean values for the group, usually due
o low protein concentrations of the sample. Therefore, all values
ithin that region for that animal were removed from the analy-

is. This resulted in 6–8 animals/group for all tissue monoamine
omparisons.

.4.2. Dialysates
All dialysate samples were analyzed for neurotransmitter con-

ent by HPLC within 24 h of collection. Dialysates were assessed
or levels of 5HT and 5HIAA, NE, DOPAC and HVA using HPLC cou-
led to electrochemical detection as described in detail in Lorrain et
l. [45]. Peaks corresponding to NE, DOPAC, 5HIAA, HVA and 5-HT
luted with retention times of approximately 4.3, 5.9, 8.8, 12.6 and
6.6 min, respectively. Levels of DA and MHPG in dialysates were
ot assessed because DA co-eluted with another peak on the chro-
atogram and could not be reliably measured and MHPG was not

etected.

.5. Statistical analysis

Changes in body weight among groups were compared using
epeated measures ANOVA (GraphPad Prism, San Diego, CA)
hat assessed the main effects of treatment, time and the treat-

ent × time interaction. A one-way ANOVA was used to determine
roup differences in uterine weight as well as tissue levels of
onoamines within region. Bartlett’s test was used to assess dif-

erences in variance. When unequal variance among groups was
etected, data were transformed using either a reciprocal or nat-
ral log transformation. For statistical analysis of microdialysis
ata, data sets were divided into two different time periods, “base-

ine” (samples 0–180 min) and “fenfluramine challenge” (samples
10–360 min). Monoamine and metabolite concentrations were
hen compared using repeated measures ANOVA that assessed the

ain effects of treatment, time period (baseline vs. fenfluramine
hallenge) and the treatment × time period interaction. All post hoc
omparisons were made using Student–Newman–Keuls test and
tatistical significance was assigned when the p value ≤0.05.

. Results

.1. Body and uterine weight
Body and uterine weight were monitored as indices of ER�
ctivation [41]. A repeated measures ANOVA revealed a sig-
ificant effect of treatment (p = 0.01), time (p < 0.001) and a
reatment × time interaction (p < 0.001) for changes in body weight.
other two groups. Day 4 body weights of E- and PPT-treated animals were not dif-
ferent from each other. *p < 0.001 vs. Day 0; on Day 4, groups with different letters
are different from each other, p < 0.01.

Body weight increased (p < 0.001; Fig. 1) over time in vehicle-, E-
and C19-treated animals but not those treated with PPT. On Day 4,
body weight was significantly (p < 0.01) greater in animals treated
with vehicle or C19 compared to E or PPT which did not differ from
each other. In contrast to the effects on body weight, uterine weight
was increased (p < 0.001; Fig. 2) by E and PPT, but not C19 which
was not different from vehicle-treated animals.

3.2. Monoamines

3.2.1. Tissue punches
Table 1 shows concentrations of NE and its metabolite, MHPG

in the four groups. There was a main effect of treatment on NE
concentrations in two areas of the brain. Post hoc analysis showed
that both E (p < 0.05; 35%) and PPT (p < 0.01; 64%) increased levels of
NE in the frontal cortex and there was a trend for C19 (p = 0.07; 24%)
to increase NE in this region as well. All three ER ligands increased
NE in the ventral hippocampus (p < 0.05; E: 31%; C19: 28%; PPT:
Fig. 2. ER ligand-induced changes in uterine weight. Animals (n = 8/group) were
dosed s.c. for 4 days with vehicle, E (0.05 mg/kg), the ER� subtype-selective agonist,
C19 (3 mg/kg) or the ER� subtype-selective agonist, PPT (3 mg/kg). By Day 4, treat-
ment with E or PPT, but not C19, increased mean ± SEM uterine weight. *p < 0.001
vs. vehicle-treated animals.
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Table 1
Effect of ER ligands on the noradrenergic system in discrete regions of the rat CNS.

Region NE MHPG

Oil E C19 PPT Oil E C19 PPT

FC 9.01 ± 1.05 12.18 ± 0.99* 11.16 ± 0.70b 14.76 ± 1.70** 20.43 ± 2.26 42.36 ± 11.2 39.10 ± 10.2 33.85 ± 5.07
ACB 0.94 ± 0.19 2.21 ± 0.66 3.39 ± 1.20 0.83 ± 0.22 2.49 ± 0.82 1.65 ± 0.44 1.59 ± 0.38 4.10 ± 2.81
ST 0.14 ± 0.01 0.19 ± 0.04 0.16 ± 0.02 0.24 ± 0.04 0.51 ± 0.08 0.68 ± 0.09 0.59 ± 0.04 0.46 ± 0.09
AMYG 2.24 ± 0.19 2.48 ± 0.14 2.19 ± 0.14 2.55 ± 0.19 3.43 ± 0.68 3.71 ± 0.80 2.57 ± 0.28 2.95 ± 0.27
VHIPP 6.47 ± 0.44 8.45 ± 0.43* 8.25 ± 0.31* 8.71 ± 0.46* 24.07 ± 9.09 13.08 ± 0.64 16.79 ± 3.22 52.67 ± 9.42**,a

SN 1.10 ± 0.11 0.86 ± 0.11 0.89 ± 0.05 0.95 ± 0.17 4.49 ± 0.51 2.95 ± 0.31 3.69 ± 0.59 4.06 ± 0.94
VTA 4.23 ± 0.28 5.88 ± 0.73 4.06 ± 0.35 4.66 ± 0.74 7.38 ± 1.35 7.98 ± 0.83 8.49 ± 0.77 7.08 ± 0.65
DR 7.73 ± 0.79 8.64 ± 1.05 7.26 ± 1.01 7.54 ± 0.78 10.39 ± 1.85 9.90 ± 1.47 11.58 ± 2.21 12.44 ± 1.36
LC 31.48 ± 5.42 31.43 ± 4.00 25.26 ± 3.46 35.12 ± 2.86 20.95 ± 1.75 17.89 ± 1.62 13.80 ± 2.14* 20.21 ± 1.53

All data expressed as pg/�g protein and are mean ± SEM, n = 6–8 animals/group. All post hoc comparisons are vs. vehicle-treated animals. FC, frontal cortex; ACB, nucleus
accumbens; ST, striatum; AMYG, amygdala; VHIPP, ventral hippocampus; SN, substantia nigra; VTA, ventral tegmental area; DR, dorsal raphe nucleus; and LC, locus coeruleus.

a Reciprocal transformed.
b p = 0.07.
* p < 0.05

** p < 0.01.

Table 2
Effect of ER ligands on the serotonergic system in discrete regions of the rat CNS.

Region 5HT 5HIAA

Oil E C19 PPT Oil E C19 PPT

FC 10.38 ± 1.90 11.71 ± 2.46 13.61 ± 2.16 12.09 ± 1.57 3.79 ± 0.88 8.96 ± 2.20 4.72 ± 0.84 12.71 ± 6.79
ACB 4.10 ± 0.87 3.97 ± 0.57 3.40 ± 0.45 3.53 ± 0.68 1.08 ± 0.11 1.29 ± 0.12 1.15 ± 0.06 1.11 ± 0.07
ST 0.36 ± 0.05 0.51 ± 0.09 0.42 ± 0.06 0.49 ± 0.05 1.90 ± 0.12 2.58 ± 0.21*,a 2.06 ± 0.10 2.68 ± 0.45
AMYG 2.71 ± 0.43 3.11 ± 0.20 2.21 ± 0.27 2.79 ± 0.11 2.62 ± 0.35 2.45 ± 0.32 2.05 ± 0.15 2.36 ± 0.18
VHIPP 5.85 ± 0.51 6.28 ± 0.32 6.38 ± 0.34 6.74 ± 0.82 3.35 ± 0.09 4.61 ± 0.40* 4.07 ± 0.13 3.88 ± 0.39
SN 7.19 ± 0.67 6.43 ± 0.58 6.68 ± 0.63 7.18 ± 0.67 4.39 ± 0.81 4.19 ± 0.28 3.94 ± 0.54 3.70 ± 0.28
VTA 5.62 ± 0.20 7.76 ± 1.04 5.75 ± 0.24 6.53 ± 0.51 7.65 ± 0.45 10.61 ± 0.47** 7.89 ± 0.34 9.14 ± 0.55
DR 11.22 ± 0.90 14.36 ± 1.61 11.91 ± 1.29 13.21 ± 1.01 7.46 ± 0.53 9.85 ± 1.14 9.42 ± 1.66 9.09 ± 0.85
LC 4.88 ± 0.52 5.03 ± 0.42 5.18 ± 0.32 4.73 ± 0.20 5.86 ± 0.46 6.34 ± 0.18 6.75 ± 0.54 6.49 ± 0.64

All data expressed as pg/�g protein and are mean ± SEM, n = 6–8 animals/group. All post hoc comparisons are vs. vehicle-treated animals. FC, frontal cortex; ACB, nucleus
a ntia n
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ccumbens; ST, striatum; AMYG, amygdala; VHIPP, ventral hippocampus; SN, substa
a Reciprocal transformed.
* p < 0.05.

** p < 0.01.

Table 2 describes ER ligand-induced changes in serotonergic
arameters. There were no significant effects of ER ligands on 5HT

evels. In contrast, there was a main effect of treatment on 5HIAA
n a number of regions. Specifically, E increased 5HIAA in the stria-
um (p < 0.05; 36%), ventral hippocampus (p < 0.05; 38%) and ventral
egmental area (p < 0.01; 39%). There were no statistically signifi-
ant effects of the ER subtype-selective agonists on 5HT or 5HIAA
n the areas examined.

There were no statistically significant effects of the ER ligands on
evels of DA or the DA metabolite HVA (Table 3). There was a main
ffect of treatment on levels of the DA metabolite DOPAC in frontal
ortex and amygdala. Post hoc comparison of treatment effects in
hese two areas showed that PPT increased levels of DOPAC in
ortex (p < 0.05; 72%) whereas C19 decreased it in the amygdala
p < 0.05; 42%).

.2.2. Dialysates
There was a significant main effect of fenfluramine challenge

time period; p < 0.001) for a number of monoamines or their
etabolites but no overall effect of treatment for any of the ana-

ytes. Baseline levels of the monoamines and metabolites were
ot different among vehicle-, E- or C19-treated groups. Fenflu-
amine challenge significantly (p < 0.001) increased mean levels

f 5HT, NE and HVA relative to baseline (Fig. 3). The increase in
HT concentrations following fenfluramine challenge did not differ
mong treatment groups. While levels of NE in C19- and E-treated
roups appeared to be somewhat greater following fenfluramine
hallenge compared to vehicle controls, these differences were
igra; VTA, ventral tegmental area; DR, dorsal raphe nucleus; and LC, locus coeruleus.

not statistically significant. For HVA, there was also a significant
treatment × time interaction (Fig. 3C; p < 0.05); HVA levels were
significantly (p < 0.05) increased in E- and C19-treated animals fol-
lowing fenfluramine challenge but not in vehicle-treated animals
relative to baseline. Fenfluramine did not induce statistically sig-
nificant changes in DOPAC or 5HIAA in any of the groups (data not
shown).

4. Discussion

The aim of this study was to determine the effects of selective
activation of the two nuclear ERs on monoaminergic neurotrans-
mitter and metabolite levels in the rat brain. ER isoform-selective
changes in monoamines and their metabolites were assessed in
discrete regions throughout the female rat brain as well as via
microdialysis in the ventral hippocampus. Activation of the two ER
isoforms increased levels of NE and also affected metabolism of NE
and DA in select brain regions. In contrast, E alone affected levels
of the serotonin metabolite 5HIAA. These findings support the idea
that both ER� and ER� mediate the effects of E on catecholaminer-
gic systems in the female rat brain.

All three ER ligands increased tissue content of NE in the ven-
tral hippocampus. Our previous work demonstrated that long-term

treatment with E increases NE in the CA3 region of the hippocam-
pus [49]. We have evidence to suggest that the commercially
available ER� agonist diarylpropionitrile (DPN) also affects nora-
drenergic parameters in different regions of the hippocampus [50].
The present findings extend these observations by demonstrating
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Table 3
Effect of ER ligands on the dopaminergic system in discrete regions of the rat CNS.

Region DA DOPAC HVA

Oil E C19 PPT Oil E C19 PPT Oil E C19 PPT

FC 6.36 ± 1.85 6.90 ± 2.42 6.81 ± 1.41 6.13 ± 2.53 66.02 ± 10.6 77.25 ± 7.08 66.48 ± 4.4 113.38 ± 17.9*,a 9.47 ± 3.17 19.83 ± 9.34 5.49 ± 0.53 6.74 ± 1.45
ACB 51.34 ± 2.41 53.80 ± 3.20 48.82 ± 4.35 51.10 ± 2.79 22.04 ± 5.18 15.00 ± 0.97 16.55 ± 2.6 15.67 ± 0.92 6.13 ± 0.42 5.56 ± 0.42 5.40 ± 0.64 6.21 ± 1.05
ST 38.15 ± 2.99 39.64 ± 1.22 36.50 ± 1.75 37.82 ± 1.49 8.65 ± 0.52 10.53 ± 0.8 8.38 ± 0.39 9.30 ± 0.60 5.25 ± 0.39 6.02 ± 0.54 5.40 ± 0.44 4.78 ± 0.35
AMYG 0.98 ± 0.15 0.73 ± 0.08 0.68 ± 0.11 0.81 ± 0.10 0.56 ± 0.07 0.41 ± 0.05 0.32 ± 0.05* 0.39 ± 0.05 1.01 ± 0.23 0.61 ± 0.05 1.19 ± 0.41 0.74 ± 0.13
VHIPP 1.08 ± 0.38 1.40 ± 0.15 1.60 ± 0.21 1.63 ± 0.38 0.31 ± 0.09 0.19 ± 0.01 0.39 ± 0.04 0.46 ± 0.12 0.43 ± 0.07 0.53 ± 0.07 0.47 ± 0.03 0.40 ± 0.06
SN 2.26 ± 0.30 1.62 ± 0.21 1.66 ± 0.16 1.71 ± 0.21 1.27 ± 0.13 1.02 ± 0.15 1.04 ± 0.09 1.04 ± 0.90 1.50 ± 0.14 1.45 ± 0.28 1.65 ± 0.34 1.06 ± 0.08
VTA 3.48 ± 1.47 6.45 ± 2.26 3.14 ± 1.08 4.80 ± 1.50 2.15 ± 0.59 2.40 ± 0.48 1.91 ± 0.43 2.12 ± 0.37 1.84 ± 0.20 2.36 ± 0.30 1.91 ± 0.13 1.84 ± 0.20
DR 1.83 ± 0.26 1.97 ± 0.33 1.75 ± 0.26 1.71 ± 0.26 10.14 ± 1.09 9.61 ± 0.45 9.55 ± 0.83 8.20 ± 0.88 0.63 ± 0.07 0.49 ± 0.08 0.46 ± 0.06 0.58 ± 0.10
LC 2.34 ± 0.63 2.14 ± 0.29 2.12 ± 0.40 2.97 ± 0.25 3.63 ± 1.03 4.41 ± 0.64 3.02 ± 0.60 4.25 ± 0.71 1.40 ± 0.21 1.39 ± 0.19 1.48 ± 0.22 1.95 ± 0.44

All data expressed as pg/�g protein and are mean ± SEM, n = 6–8 animals/group. All post hoc comparisons are vs. vehicle-treated animals. FC, frontal cortex; ACB, nucleus accumbens; ST, striatum; AMYG, amygdala; VHIPP, ventral
hippocampus; SN, substantia nigra; VTA, ventral tegmental area; DR, dorsal raphe nucleus; and LC, locus coeruleus.

a Ln transformed.
* p < 0.05.
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The ER ligand-induced increases of NE in hippocampus and cor-
ex may reflect increased synthesis and/or accumulation of the
eurotransmitter in the nerve terminals in these areas. Both ERs
re expressed in noradrenergic cell groups in the ventrolateral
edulla and nucleus of the solitary tract [25,30]. However, these

ell groups send few, if any, projections to hippocampus and cortex
nd therefore are not likely to have contributed to the increased NE
bserved in these areas. Instead, both forebrain regions receive pro-
ections from noradrenergic neurons of the locus coeruleus [44,53].
stradiol increases expression of the two enzymes required for syn-
hesis of NE within the locus coeruleus, an effect that may be both
ime- and dose-dependent [9,54]. Furthermore, ER� is reported to
nteract directly with the promoter region of at least one of the
nzymes [9]. Neurons within the locus coeruleus express ER� and
R� [25], providing a direct pathway by which ER activation may
ffect NE synthesis. Importantly, NE activity in the frontal cortex
nd hippocampus, transmitted almost solely by neurons of the
ocus coeruleus, is implicated in modulation of cognitive processes
reviewed in [55]).

Levels of the NE metabolite MHPG were altered in two areas
f the brain by the two ER subtype-selective agonists but in a
egion-dependent manner and this also was the case for the DA
etabolite DOPAC. Differences in the amount of the DA metabolite
VA released in the ventral hippocampus following fenfluramine
dministration also were noted in animals treated with E or the ER�
gonist compared to vehicle-treated animals. The catecholaminer-
ic neurotransmitters are metabolized by the enzymes monoamine
xidase and catechol-o-methyl transferase, and activity levels of
oth are modulated by E [11,13]. While little is known about the role
he different ER isoforms play in regulating these enzymes, our data
ndicate that both receptors may modulate these key metabolic
athways. The majority of monoamine metabolism is thought to
ccur following reuptake of the neurotransmitters into the cells
n which the neurotransmitters were originally synthesized. Thus,
he potential modulatory effects of ER ligands on reuptake mech-
nisms also must be considered. Recent work by Le Saux and Di
aolo [56] showed that E and an ER� agonist but not ER� ago-
ist increased levels of the DA transporter in striatum. Additional
tudies are needed to determine more precisely the mechanism(s)
hrough which ER�/� activation influences catecholamine levels in
he rat brain.

In the current study, E did not affect levels of 5HT per se but
ncreased levels of the 5HT metabolite 5HIAA in several regions
f the CNS. The lack of significant change in 5HT within fore-
rain areas is consistent with published work [57]. However, recent
eports show that E can regulate expression of the 5HT biosynthetic
nzyme tryptophan hydroxylase 2 (TPH2) in discrete regions of the
at dorsal raphe, a primary source of forebrain 5HT, and this effect
an be mediated through the ER� [10,58]. It is possible that changes
n TPH2 within the dorsal raphe do not translate into measurable
ifferences in 5HT in the forebrain areas examined in our study or
hat differences in the length of exposure to ER ligands contributes
o the differences in findings [3]. In contrast, levels of 5HIAA were
ncreased by ∼38% in response to E in the striatum, ventral hip-
ocampus and ventral tegmental area. Increased metabolism of
HT to 5HIAA may be the result of increased 5HT reuptake into cells
ia the serotonin reuptake transporter (SERT) or increased activ-
ty of monoamine oxidase, as previously mentioned. Indeed, E has
een shown to increase SERT in some areas of the female rat brain

ncluding in the hippocampus [59], which could result in increased
euptake and metabolism of the indolamine.
Surprisingly, neither of the ER subtype-specific agonists sig-
ificantly influenced levels of 5HIAA. Inherent variability in
onoaminergic measurements in some of the areas e.g., stria-

um, may have precluded our ability to identify effects of the ER
elective ligands. Alternatively, activation of both receptors may
& Molecular Biology 122 (2010) 310–317 315

be required to induce a significant change in 5HT metabolism.
Another intriguing possibility is that E exerted its effects in these
areas via the recently identified extra-nuclear ER known as GPR30.
GPR30 is expressed throughout the rodent brain [60,61] and it was
recently shown to decrease function of the 5HT1A autoreceptor in
the rat hypothalamus [62]. Desensitization of the 5HT1A receptor
is thought to lead to an increase in 5HT release and theoretically
metabolism, however, additional work is needed to understand the
role E plays in regulating activity of this novel ER.

4.1. Specificity of subtype-selective ER ligands

The two subtype-selective ER ligands had different effects on
body and uterine weight. PPT both increased uterine weight and
maintained body weight at a level similar to E, which is consistent
with the idea that the ER� plays the predominant role in uterine
proliferation and maintenance of body weight [63]. The ER� agonist
C19 is a novel non-steroidal ligand that has low nM affinity for the
ER� and is >70-fold selective for ER� compared to the ER� [39]. The
fact that the ER� ligand had no effect on uterine or body weight but
affected levels of neurotransmitters supports the idea that the dose
was sufficient to selectively activate the ER�. In addition, we have
recent data to suggest that C19 improves performance in specific
memory tasks similar to the ER� agonist, DPN [50]. Importantly, the
data reflect only one time point and, as mentioned previously, at
least some of the effects of E on monoamines are time-dependent
[52]. In light of this, it is possible that the effects of ER subtype-
selective activation on monoamine concentrations also may vary
depending on length of exposure.

4.2. Physiological relevance

Although the impact of ER isoform-selective changes in
monoamines on CNS-driven physiology and behavior is unclear,
numerous reports support the idea that E affects various dimen-
sions of cognitive and affective function (reviewed in [7,8]). In
mice, disruption of the ER� impaired spatial learning, and aug-
mented aggressive and anxiety-like behavior [64–68]. In ovx rats,
an ER� subtype-selective agonist, but not an ER� selective agonist,
improved performance in a hippocampal-dependent memory task
[69]. Selective activation of the ER� or ER� using a 4-day treatment
paradigm similar to ours differentially influenced anxiety-like
behaviors [70]. Those authors suggest that ER� activation is anx-
iolytic whereas ER� activation results in anxiogenic responses in
female rats. Other studies that employed acute administration (i.e.,
10–60 min) of selective ER agonists directly into the hippocampus
support the view that ER� activation reduces anxiety and increases
the extinction rate of a contextual fear memory, but also implicates
a non-genomic mechanism of action following activation of the ER�
[71,72].

5. Conclusion

In summary, our data are the first to demonstrate the effects
of isoform selective ER activation on tissue concentrations of
monoamines and their metabolites in the rat CNS. The data show
that activation of either ER isoform with selective agonists influ-
ences levels of the catecholamines and/or their metabolites in
region- and receptor-specific manners. Activation of either ER pro-
duces similar effects on levels of NE in areas critical for cognitive

and affective function, such as the frontal cortex and hippocampus.
This finding supports the possibility that use of an ER� subtype-
selective agonist may be effective in enhancing neural function
without the potential for adverse effects on breast and uterus that
are associated with ER� activation.
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